Success Criteria	Completed
I know that a fair spinner is one where the chances of landing on a different part are equal	
I know that a biased spinner is one where the chances of landing on each part is different	
I know that the total of all probabilities is 1.	
I know that if I need to work out a last probability, I can do it by subtracting the total of all the known probabilities from 1.	
I know the relative positions of impossible, unlikely, even, likely and certain on a scale.	
I know the numerical equivalents of impossible, unlikely, even, likely and certain.	
I know that I can work out the chances of two independent events occurring (eg throwing a 3 and then a 2) by multiplying the chance of one by the chance of another when I spin one spinner then the other.	
I can calculate the chances of A or B coming up by adding the probability of A to the probability of B.	

Success Criteria	Completed
I know that a fair spinner is one where the chances of landing on a different part are equal	
I know that a biased spinner is one where the chances of landing on each part is different	
I know that the total of all probabilities is 1.	
I know that if I need to work out a last probability, I can do it by subtracting the total of all the known probabilities from 1.	
I know the relative positions of impossible, unlikely, even, likely and certain on a scale.	
I know the numerical equivalents of impossible, unlikely, even, likely and certain.	
I know that I can work out the chances of two independent events occurring (eg throwing a 3	
and then a 2) by multiplying the chance of one	
by the chance of another when I spin one	
spinner then the other.	

